Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evodevo ; 15(1): 4, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575982

RESUMO

BACKGROUND: Nutrient availability is among the most widespread means by which environmental variability affects developmental outcomes. Because almost all cells within an individual organism share the same genome, structure-specific growth responses must result from changes in gene regulation. Earlier work suggested that histone deacetylases (HDACs) may serve as epigenetic regulators linking nutritional conditions to trait-specific development. Here we expand on this work by assessing the function of diverse HDACs in the structure-specific growth of both sex-shared and sex-specific traits including evolutionarily novel structures in the horned dung beetle Onthophagus taurus. RESULTS: We identified five HDAC members whose downregulation yielded highly variable mortality depending on which HDAC member was targeted. We then show that HDAC1, 3, and 4 operate in both a gene- and trait-specific manner in the regulation of nutrition-responsiveness of appendage size and shape. Specifically, HDAC 1, 3, or 4 knockdown diminished wing size similarly while leg development was differentially affected by RNAi targeting HDAC3 and HDAC4. In addition, depletion of HDAC3 transcript resulted in a more rounded shape of genitalia at the pupal stage and decreased the length of adult aedeagus across all body sizes. Most importantly, we find that HDAC3 and HDAC4 pattern the morphology and regulate the scaling of evolutionarily novel head and thoracic horns as a function of nutritional variation. CONCLUSION: Collectively, our results suggest that both functional overlap and division of labor among HDAC members contribute to morphological diversification of both conventional and recently evolved appendages. More generally, our work raises the possibility that HDAC-mediated scaling relationships and their evolution may underpin morphological diversification within and across insect species broadly.

2.
Facial Plast Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38378042

RESUMO

Deficits in corneal innervation lead to neurotrophic keratopathy (NK). NK is frequently associated with facial palsy, and corneal damage can be accelerated by facial palsy deficits. Corneal nerves are important regulators of limbal stem cells, which play a critical role in epithelial maintenance and healing. Nonsurgical treatments of NK have undergone recent innovation, and growth factors implicated in corneal epithelial renewal are a promising therapeutic avenue. However, surgical intervention with corneal neurotization (CN) remains the only definitive treatment of NK. CN involves the transfer of unaffected sensory donor nerve branches to the affected cornea, and a variety of donor nerves and approaches have been described. CN can be performed in a direct or indirect manner; employ the supraorbital, supratrochlear, infraorbital, or great auricular nerves; and utilize autograft, allograft, or nerve transfer alone. Unfortunately, comparative studies of these factors are limited due to the procedure's novelty and varied recovery timelines after CN. Regardless of the chosen approach, CN has been shown to be a safe and effective procedure to restore corneal sensation and improve visual acuity in patients with NK.

3.
Dev Genes Evol ; 230(3): 213-225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31960122

RESUMO

Size and shape constitute fundamental aspects in the description of morphology. Yet while the developmental-genetic underpinnings of trait size, in particular with regard to scaling relationships, are increasingly well understood, those of shape remain largely elusive. Here we investigate the potential function of the Notch signaling pathway in instructing the shape of beetle horns, a highly diversified and evolutionarily novel morphological structure. We focused on the bull-headed dung beetle Onthophagus taurus due to the wide range of horn sizes and shapes present among males in this species, in order to assess the potential function of Notch signaling in the specification of horn shape alongside the regulation of shape changes with allometry. Using RNA interference-mediated transcript depletion of Notch and its ligands, we document a highly conserved role of Notch signaling in general appendage formation. By integrating our functional genetic approach with a geometric morphometric analysis, we find that Notch signaling moderately but consistently affects horn shape, and does so differently for the horns of minor, intermediate-sized, and major males. Our results suggest that the function of Notch signaling during head horn formation may vary in a complex manner across male morphs, and highlights the power of integrating functional genetic and geometric morphometric approaches in analyzing subtle but nevertheless biologically important phenotypes in the face of significant allometric variation.


Assuntos
Padronização Corporal , Besouros/crescimento & desenvolvimento , Besouros/genética , Receptores Notch/fisiologia , Proteínas Serrate-Jagged/metabolismo , Transdução de Sinais , Animais , Evolução Biológica , Besouros/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Morfogênese , Fenótipo , Interferência de RNA , Proteínas Serrate-Jagged/genética , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...